
Week 10 - Friday

 What did we talk about last time?
 Bipartite matching

 Two vegetarians and two cannibals are on one bank of a river
 They have a boat that can hold at most two people
 Come up with a sequence of boat loads that will convey all

four people safely to the other side of the river
 The cannibals on any given bank cannot outnumber the

vegetarians…or else!

 Until this point in the course, we have studied efficient
algorithms
 Polynomial time algorithms

 Perhaps more important than the list of algorithms we studied
were the principles behind such algorithms

 Are there problems for which there are no efficient
algorithms?

 The study of computational complexity tries to rank all
problems based on their difficulty

 Some very hard problems have been proven to have no
polynomial-time algorithms

 Unfortunately, a large number of important problems in
optimization, AI, combinatorics, logic, and other areas have
resisted categorization
 We have not been able to find polynomial-time algorithms for these

problems
 But we have also failed to prove that polynomial time algorithms

cannot exist

 NP-complete problems are one of the classes in this gray area
 All NP-complete problems are essentially equivalent because

a polynomial-time algorithm for one such problem would
imply a polynomial-time algorithm for all of them

 Thus, we can think of this set of thousands of problems as
really one fundamental problem

From xkcd: https://xkcd.com/287/

 Sometimes, very small instances or very constrained
instances of NP-complete problems are solvable

 Otherwise, we believe that NP-complete problems are
computationally infeasible to solve, even though we can't
prove it

 Why look for an efficient algorithm for a problem when no
one can find an efficient one for all these famous problems?

 How can we compare the hardness of problems?
 How are we able to say that NP-complete problems are all the

same level of hardness?
 We want a formal way to describe that problem X is at least as

hard as problem Y
 The tool we use to argue that X is at least as hard as Y is called

a reduction

 We imagine that we have a black box that can solve problem
X instantly

 Can any instance of problem Y be solved by doing polynomial
work to format the input for Y into input for X followed by a
polynomial number of calls to the black box that solves X?

 If the answer is yes, we write Y ≤P X and say that Y is
polynomial-time reducible to X

 Imagine that there is a polynomial-time algorithm to solve X
 We can solve Y with a polynomial prep time plus polynomial

calls to X
 That means that Y can be solved with polynomial work plus

polynomial work times polynomial work
 Thus, Y can also be solved in polynomial time

 Formally:
 Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be

solved in polynomial time.

 We didn't really study logic in this class
 Since we assumed you got everything you needed in MATH 1230 and

COMP 2230
 If you have an implication p→ q that is true, its contrapositive ~q
→ ~p is also true

 Implication:
 Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be

solved in polynomial time.
 Contrapositive:
 Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X cannot

be solved in polynomial time.

 Reductions are not one tool in our arsenal…
 They're pretty much our only tool for comparing the difficulty of

problems
 If you can solve a problem with a polynomial-time algorithm,

you know it's polynomial
 For NP-complete problems (and even some higher classes),

we have no way of being sure
 All we can do is say that one problem is at least as hard as

another

 Recall the independent set graph problem
 Given an undirected graph, find the largest collection of nodes

that are not connected to each other
 Practical application:
 Nodes represent friends of yours
 An edge between those two nodes means they hate each other
 What's the largest group of friends you could invite to a party if you

don't want any to hate each other?

A

H

G

FE

D

C

B

 Independent set is an NP-complete problem
 We don't know a polynomial-time algorithm for it, but we

don't know how to prove that there isn't one
 We just stated the optimization version of independent set:
 Find the largest independent set

 But there is also a decision version:
 Given a graph G and a number k, does G contain an independent set

of size at least k?

 Optimization problems feel more natural to us
 We want to know what the largest independent set is

 However, decision problems are usually used for problem
reductions
 Why? The output is simpler.

 If you can efficiently solve the decision version, you can get a lot of
information about the optimization version
 Use a binary search on k to find the size of the largest independent set

 Many people believe the fundamental computational hardness of
a decision version is roughly the same as the optimization version,
for most problems

 The vertex cover problem is another graph problem:
 Given a graph G = (V, E), we say that a set of nodes S⊆ V is a vertex

cover if every edge e ∈ E has at least one end in S
 In other words, find a set of vertices such that all edges touch at least

one
 It's easy to find a big vertex cover: all vertices
 It's hard to find a small one
 Decision version:
 Given a graph G and a number k, does G contain a vertex cover at

size at most k?

A

H

G

FE

D

C

B

 Claim: Let G = (V,E) be a graph. S is an independent set if and
only if its complement V – S is a vertex cover.

 Proof:
 Suppose that S is an independent set. Consider an edge e = (u,v).

Since S is independent, it cannot be the case that both u and v are in
S. Thus, one of them must be in V – S. It must be the case that every
edge has at least one end in V – S, so V – S is a vertex cover.

 Suppose that V – S is a vertex cover. Consider any two nodes
u and v in S. If they were joined by edge e, then neither end of
e would lie in V – S, contradicting the assumption that V – S is
a vertex cover. Thus, it must be the case that no two nodes in
S are joined by an edge, so S must be an independent set.

∎

 Proof:
 If we have a black box to solve vertex cover, we can decide whether G

has an independent set of size at least k by asking the black box
whether G has a vertex cover of size at most n – k.

∎

 Proof:
 If we have a black box to solve independent set, we can decide

whether G has a vertex cover of size at most k by asking the black
box whether G has an independent set of size at least n – k.

∎

 We don't have an efficient algorithm for either independent
set or vertex cover

 Even so, we know that they are both approximately as hard as
each other

 These two problems are so closely related that it seems like
this kind of reduction might not be generally applicable

 However, the entire class of NP-complete problems are all
reducible to each other, so it's a pretty general technique

 Independent set is a packing problem
 We want to pack in as many things as possible, subject to constraints

 Vertex cover is a covering problem
 We want to cover everything (edges, in this case) with the smallest

number of things (vertices in this case)
 There are many NP-complete problems that fall into

categories of packing and covering problems

 Given:
 Set U of n elements
 Collection of sets S1, S2,…, Sm of subsets of U
 A number k

 Is there a collection of at most k subsets whose union is equal
to all of U?

S1

S2

S3 S4 S5

S6

S7

 Proof:
 Suppose we have a black box that can solve set cover.
 Consider an instance of vertex cover on graph G = (V, E) with number

k.
 We want to cover all the edges in E, so we create a set cover problem

in which the universe set U is E.
 Each vertex in V covers some set of edges, so for every vertex i ∈ V,

we add a set Si ⊆ U where the elements of Si are all the edges
incident on i.

 We claim that U can be covered with at most k of the sets S1, S2,
…, Sn if and only if G has a vertex cover of size at most k.

 If 𝑆𝑆𝑖𝑖1 , 𝑆𝑆𝑖𝑖2 , … 𝑆𝑆𝑖𝑖𝑙𝑙 are l ≤ k sets that cover U, then every edge in G is
incident to one of the vertices i1, i2,…, il. Thus, the set {i1,i2,…,il} is
a vertex cover in G of size l ≤ k.

 Conversely, if {i1, i2,…, il} is a vertex cover in G of size l ≤ k, then the
sets 𝑆𝑆𝑖𝑖1 , 𝑆𝑆𝑖𝑖2 , … 𝑆𝑆𝑖𝑖𝑙𝑙 cover U.

 For any vertex cover problem, we make an instance of set cover as
described, pass it to our black box, and answer yes if and only if
the black box answers yes.

∎

 Reductions via gadgets
 Certificates and the definition of NP

 Finish Homework 5
 Due tonight by midnight!

 Read 8.2 and 8.3
 Study for Exam 3
 Monday after next!

	COMP 4500
	Last time
	Questions?
	Logical warmup
	NP-completeness
	Efficient algorithms
	Hard problems
	NP-complete
	Slide Number 9
	What happens when you need to solve an NP-complete problem?
	Slide Number 11
	Slide Number 12
	Three-Sentence Summary of Polynomial-Time Reductions
	Polynomial-Time Reductions
	Characterizing hardness
	Reductions
	Why are reductions useful?
	What about the other direction?
	A house of cards
	Independent set
	Independent set example
	Hardness of independent set
	Optimization vs. decision problems
	Vertex cover
	Find a small vertex cover on this graph
	Relationship between independent set and vertex cover
	Proof continued
	Independent set ≤P vertex cover
	Vertex cover ≤P independent set
	Reductions
	Packing and covering
	Set cover
	Set cover example
	Vertex cover ≤P set cover
	Proof continued
	Upcoming
	Next time…
	Reminders

